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Abstract

In the United States, a version of divide-and-choose known as the

“Texas Shootout” is commonly employed to dissolve partnerships.

The Texas Shootout treats symmetric players asymmetrically, with

one player designated to be the Divider and the other designated the

Chooser. This asymmetry leads to inequitable and ineffi cient out-

comes. This paper introduces a symmetric form of divide-and-choose.

Like classical divide-and-choose, the mechanism generates envy-free

and proportionally fair outcomes. Unlike classical divide-and-choose,

the mechanism treats identical claimants identically and its equilib-

rium is effi cient. Finally, the outcome under maxmin play is closely

related to the Shapley value of an associated cooperative game.
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1 Introduction

The study of fair division begins with divide-and-choose: One person di-

vides, the other person chooses. The idea is simple, practical, and seemingly

fair. People have been using divide-and-choose for thousands of years to re-

solve disputes over contested property.1 However, despite its widespread use,

it is strange that the procedure most identified with fair division is asym-

metric, treating otherwise identical claimants differently ex-ante as they are

assigned different roles —divider or chooser. Further, for the allocation prob-

lem studied here, divide-and-choose is inequitable (it favors the chooser) and

the equilibrium is ineffi cient. This paper offers an alternative. We introduce

a version of divide-and-choose which treats identical claimants identically, is

equitable, is effi cient, and which preserves its familiar structure.

The problem we study can be viewed as one of dissolving a partnership: a

single indivisible item (the partnership) has to be allocated to one of the two

partners, each of whom has an equal claim. In the United States, a version

of divide-and-choose known as the “Texas Shootout”is commonly employed

to dissolve partnerships. In a shootout, the partner who wants to dissolve

the partnership (the “divider”) names a price and the other partner (the

“chooser”) is compelled to either purchase the divider’s interest or sell his

own interest at the named price. When partners have independent private

values, then the equilibrium is ineffi cient and favors the chooser.

The symmetric divide-and-choose procedure introduced here is a variation

of the Texas Shootout, but has the feature that players choose their price

before knowing whether they are the divider or the chooser. In the game,

each player simultaneously chooses a price and then one player is randomly

selected to be the divider. The divider’s price is the price at which the

partnership is allocated. The chooser’s price determines which player buys

the other’s interest: if the chooser’s price exceeds the divider’s price, then

1While its origin is unknown, written accounts of its use to resolve disputes go back

nearly 3000 years. Examples include its description in ancient Greek antidosis laws (see

Christ (1990)). Hesiod’s Theogeny describes a not-so-fair application of divide-and-choose

between Zeus and Promethius, called the “Trick at Mecone.”Explicit examples of divide-

and-choose procedures can be found in the Welsh Code of Venedotion to settle inheritence

disputes circa 1000 AD (see Van Essen and Verville (2023)).
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the chooser buys the partnership at the divider’s price; if the chooser’s price

is less than the divider’s price, then the chooser sells the partnership at the

divider’s price. In symmetric divide-and-choose, each player chooses a single

price which determines his action for both roles.

For symmetric divide-and-choose, we characterize the unique symmetric

Bayes Nash equilibrium in increasing bidding strategies when bidders are risk

neutral. In contrast to the Texas Shootout, the game is symmetric and its

equilibrium is effi cient. We also provide necessary and suffi cient conditions

for a bid function to be a symmetric equilibrium when bidders have general

concave utility functions.2

A natural starting point when participating in any mechanism is to think

about the payoff that one can guarantee for oneself. When dividing a dollar,

for example, a sensible divider understands that dividing the dollar into two

equal amounts of 50 cents guarantees the divider a payoff of 50 cents and,

indeed, this division maximizes the divider’s minimum payoff. We show

that in symmetric divide-and-choose each player has a unique “maxmin”

strategy, i.e., a strategy that maximizes his minimum payoff, which is to bid

an amount equal to half his value. If each player follows his maxmin strategy,

then the resulting allocation is ex-post effi cient and envy free. Furthermore,

the allocation that results under maxmin play is related to the Shapley value

allocation, which is commonly taken as a benchmark for a fair allocation: If

the player with the higher value is the divider, then the “pessimistic”Shapley

value allocation obtains, while if the player with the lower value is the divider,

then the “optimistic”Shapley value allocation obtains. This result connects

maxmin play in symmetric divide-and-choose, a non-cooperative game, to

canonically fair solutions dictated by cooperative game theory.

While there are other symmetric mechanisms which generate effi cient

allocations, an essential and distinguishing feature of the symmetric divide-

and-choose mechanism introduced here is that it preserves the structure of a

2Both the Texas shoot-out and symmetric divide-and-choose are envy free. In the shoot-

out, the allocation is envy free when the divider chooses a price equal to half his value for

the partnership. In symmetric divide-and-choose the same price —half the bidder’s value

—guarantees an envy free allocation.
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Texas Shootout, with a divider and a chooser.3 As de Frutos and Kittsteiner

(2008) write “. . . the buy-sell clause is considered to be such an essential part

of the partnership agreements, that a lawyer who fails to recommend to his

clients adopting one could be accused of malpractice.”Symmetric divide-and-

choose is therefore potentially better suited to actual implementation than

other mechanisms (e.g., McAfee’s Winner’s bid auction) that don’t preserve

the structure of a shootout.

Related Literature

McAfee (1992) studies the Texas Shootout in a Bayesian setting and

establishes several key results. First, equilibrium is not ex-post effi cient, i.e.,

the partner who values the partnership the most need not be the one who

receives it. Second, there is a payoff disadvantage to being the divider. This

second feature has an unfortunate consequence. In practice, the partner who

initiates the dissolution is put in the divider role.4 Since both partners prefer

to be the chooser, each prefers that the other initiates dissolution. Thus the

partners may engage in a costly war of attrition to determine which partner

moves first by naming a price. Brown and Van Essen (2022) model the

divider as being chosen by a war of attrition and test the model’s prediction

with a laboratory experiment. The results support the theory: subjects incur

significant waiting costs in order to avoid being the divider.5

Khoroshilov (2018) studies partnership dissolution when partners pri-

vately know their values, but where the divider, with probability p, knows the

chooser’s true value for the partnership. It shows that the shootout remains

ineffi cient unless p = 1. It also studies, in the same information setting, an

auction in which the highest bidder wins the partnership and pays the losing

bidder the average of the two bids. It shows that the auction is ineffi cient

unless p = 0 or p = 1. Hence the presence of an informed partner potentially

enhances effi ciency in the shootout (i.e., when p = 1), but it generally harms

3See Cramton, Gibbons, and Klemperer (1987), McAfee (1992), or Van Essen and

Wooders (2016), for such mechanisms.
4See, for example, Fleischer and Schneider (2012) who provide a legal summary of

shoot-out clauses and how they are triggered in practice.
5A war of attrition can be avoided by randomly selecting one player to be the divider,

but the equilibrium allocation continues to be ineffi cient, just as in the standard shootout.
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effi ciency in auctions.

The ineffi ciency of the Texas Shootout has motivated a search for alter-

natives. The most relevant to our setting is de Frutos and Kittsteiner (2008)

which studies an ascending clock auction in which the first bidder to drop

out becomes the divider and receives a payment equal to the price at which

he drops. The shootout then commences. The equilibrium of this two-phase

mechanism —auction then shootout —is effi cient. Here we provide a simple

modification of the Texas Shootout that treats players symmetrically and

achieves effi ciency. In a complete information environment, Nicolò and Velez

(2017) obtain interesting results using sequential move fair division games.

The prevalence of the Texas Shootout in practice has led to a growing

set of experimental studies of the mechanism in a variety of environments.

Kittsteiner, Ockenfels, and Trhal (2013) test the shootout in an independent

private values environment. Brown and Velez (2016) test the mechanism in

a complete information environment. Brooks, Landeo, and Spier (2010) and

Landeo and Spier (2013) study larger dissolution games that incorporate the

possibility of shootouts for common value partnerships where only one party

is informed. Oechssler and Roomets (2023) examine the shootout in a setting

with ambiguity.6

In Section 1 we introduce the symmetric divide-and-choose mechanism.

In Section 2 we provide the closed-form solution for the risk-neutral Bayes

Nash equilibrium. We also provide a necessary condition for equilibrium

to be in increasing strategies when bidders are risk averse. In Section 3 we

identify the unique maxmin bidding strategy in symmetric divide-and-choose

and relate it to maxmin in the Texas Shootout. In Section 4, we connect the

outcome under symmetric divide-and-choose to the Shapley value.

6Recent studies focus on other aspects of the dissolution process. For example, Hyn-

dman (2021) experimentally studies the role of risk attitudes in a dissolution bargaining

game. Fershtman, Szabadi, and Wasser (2023) studies partnership dissolution with poten-

tially unequal claims.
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2 The Model

An indivisible item is to be allocated to one of two players, whose private

values for the item are independently and identically distributed according

to distribution function F , with support [0, x̄] and density f ≡ F ′, which is

continuous and positive. Let xi denote the value of bidder i. Let xM denote

the median of F , i.e., F (xM) = 1/2. Players have a common vNM utility

function u, where u′ > 0 and u′′ ≤ 0.

In symmetric divide-and-choose, the players simultaneously choose prices

p1 and p2. Nature then selects one player at random to be the divider and

the other to be the chooser. Player i wins the item if pi > pj. He pays pi to

player j if he is the divider and he pays pj to player j if he is the chooser.

Let πi(p1, p2, x1, x2) denote the expected utility of player i, when the prices

are (p1, p2) and the values are (x1, x2). For i, j ∈ {1, 2}, i 6= j, we have

πi(p1, p2, x1, x2) =


1
2
u(xi − p1) + 1

2
u(xi − p2) if pi > pj

1
2
u(p1) + 1

2
u(p2) if pi < pj.

We assume for completeness that if p1 = p2 = p, then the chooser accepts

the divider’s price and thus πi(p1, p2, x1, x2) = 1
2
u(xi − p) + 1

2
u(p). The

tie-breaking rule has no impact on any of the results.

In symmetric divide-and-choose, just as in the Texas Shootout, the di-

vider’s price determines the price at which the partnership is sold. The

chooser is compelled to buy the divider’s interest if his price exceeds the

divider’s price.7

3 Equilibrium

We now characterize equilibrium in the symmetric divide-and-choose game.

Proposition 1 characterizes the unique symmetric equilibrium of the game

when bidders are risk neutral.
7This idea of symmetrization is similar to one seen in the early game theory literature in

two-person zero-sum games. See, for example, the discussion in Gale (1960, pp. 204-205).

6



Proposition 1: Suppose that bidders are risk neutral. The unique sym-

metric equilibrium in increasing and differentiable bidding strategies of the

Symmetric Divide-and-Choose game is given by

β(x) =
1

2

∫ xM
x

q2f(q)
[

1
2
− F (q)

]
dq[

1
2
− F (x)

]2 for x 6= xM/2,

and β(xM) = xM/2. Equilibrium is ex-post effi cient.

Equilibrium in symmetric divide-and-choose is effi cient since the highest

bidder has the highest value and obtains the partnership, whether selected

to be the divider or the chooser.

Proposition 2 gives a necessary and suffi cient condition for β to be a sym-

metric equilibrium in increasing and differentiable bidding strategies when

bidders have general concave utility functions.

Proposition 2: (i) Any symmetric equilibrium β in increasing and differ-

entiable bidding strategies satisfies the differential equation:

u (x− β(x))−u(β(x)) = β′(x)

(
1

2
u′(x− β(x))

F (x)

f(x)
− 1

2
u′(β(x))

1− F (x)

f(x)

)
.

(ii) If β is an increasing solution to the differential equation in (i) then it is

an equilibrium.

The example below illustrates the effi ciency gains of symmetric divide-

and-choose over the Texas Shootout, when values are uniformly distributed.

Example 1: If values are distributed U [0, 1], then the equilibrium bid func-

tion in symmetric divide-and-choose is

β(x) =

∫ 1
2

x
m(1

2
−m)dm

(1
2
− x)2

=
1

3
x+

1

12
for x 6= 1/2

and β(1/2) = 1/2. In the Texas Shootout, the equilibrium bid of the Divider

with value xD is

βD(xD) =
1

4
xD +

1

8
.
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When offered price p, the equilibrium decision for the Chooser with value xC
is

βC(xC , p) =

{
Buy if p ≤ xC/2

Sell if p > xC/2,

where “Buy”means that the Chooser buys the Divider’s interest.

The Texas Shootout is ineffi cient when either (i) xD > xC and βD(xD) <

xC/2, or (ii) xD < xC and βD(xD) > xC/2. The shaded regions in Figure 1

below shows the value profiles (xD, xC) for which the equilibrium allocation

is ex-post ineffi cient.

Figure 1

The (expected) surplus lost as a result of the Divider obtaining the partner-

ship when the Chooser has a higher value is∫ 1
2

0

∫ 2βD(xD)

xD

(xC − xD) dxCdxD =
1

192
,

which is also the surplus lost as a result of the Chooser obtaining the part-

nership when in fact the Divider has a higher value. The expected surplus

under symmetric divide-and-choose is 2/3, while the expected surplus if the

partnership is not dissolved at all is 1/2. The gains of effi cient dissolu-

tion are therefore 2/3 − 1/2 = 1/6. Relative to an effi cient mechanism,
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the share of the surplus forgone as a result of using the Texas Shootout is

(2/192)/(1/6) = 1/16, i.e., 6.25%. O

4 Maxmin Play

Maxmin play in the Texas Shootout is obvious, which is part of the appeal

of the procedure: The Divider with value x for the partnership, by naming a

price equal to x/2, guarantees himself a payoff of x/2. Likewise, the Chooser

with value x for the partnership, by choosing their preferred outcome, is

also guaranteed a payoff of at least x/2. Maxmin play in symmetric divide-

and-choose inherits the same structure: A player with value x who bids x/2

obtains a payoff of at least x/2 regardless of the bid of the other player or

whether he is selected to be the divider or the chooser.

Proposition 3: The unique maxmin strategy in the Symmetric Divide-and-
Choose game is γ(x) = x/2.

Since maxmin pay guarantees a bidder with value x a payoff of at least

x/2, the bidder’s interim expected equilibrium payoff must also be at least

this amount. Hence, each player’s interim equilibrium expected payoff is

“proportionally fair.”8

When both players follow their maxmin strategies, the outcome is “envy-

free,”i.e., neither player prefers the other player’s allocation to his own. The

divider either obtains the item at price p = xD/2 or receives a payment

of xD/2, and is indifferent between these allocations. Since the chooser re-

ceives his preferred of these two allocations, he does not envy the divider’s

allocation.
8In an N -player division problem a payoff π is said to be proportional fair for a player

with value x if π ≥ x/N .
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5 Symmetric Divide-and-Choose and the Shap-

ley Value

There is an interesting connection between the allocations achieved by sym-

metric divide-and-choose and the Shapley value from cooperative game the-

ory. A cooperative game is defined by a set of players and a characteristic

function v that gives the value or worth of each possible coalition. In a game

with players {1, 2} and characteristic function v, Player i’s Shapley value φi
is given by

φi =
∑

S⊆{1,2}

(|S| − 1)!(2− |S|)!
2!

[v(S)− v(S\{i})] .

The Shapley value allocation has an interpretation as the fair solution to a

cooperative game.

Symmetric divide-and-choose is related to the Shapley value, albeit in

a randomized form. Suppose that there is single item to be allocated, for

which Ann and Bob have values xA and xB, respectively, with xA > xB. The

pessimistic characteristic function, denoted by v, gives the worst-case worth

of a coalition and has

v(∅) = 0, v(A) = 0, v(B) = 0, and v(AB) = xA.

In this specification of the characteristic function, a single player can guaran-

tee himself zero, while the coalition of both players has a worth ofmax{vA, vB} =

vA. The Shapley values for v are φA = φB = xA/2, which equals the maxmin

payoffs of symmetric divide-and-choose when Ann is the divider.

The optimistic characteristic function, denoted by v̄, gives the best-case

worth of a coalition and has

v̄(∅) = 0, v̄(A) = xA, v̄(B) = xB, and v̄(AB) = xA.

In this specification, a coalition of a single player has a worth equal to the

player’s value for the item. The Shapley values for v̄ are φA = xA−xB/2 and
φB = xB/2, which are the maxmin payoffs of symmetric divide-and-choose

when Bob is the divider.
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Hence, under maxmin play, the outcome is always a Shapley value out-

come. This result is summarized in Proposition 4.

Proposition 4: If all players follow their maxmin bidding strategy in the
Symmetric Divide-and-Choose game, then the resulting outcome is the Shap-

ley allocation of the pessimistic sharing game when the bidder with the higher

value is the divider, and is the Shapley allocation of the optimistic sharing

game when the bidder with the higher value is the chooser.

6 Discussion

Symmetric divide-and-choose retains the familiar structure of the shootout,

but induces a game whose equilibrium is ex-post effi cient. The timing of

the randomization is important. If, for example, the divider and chooser

roles are determined randomly but before players choose prices, then the

equilibrium is ineffi cient. Finally, the method of symmetrization used here

can be applied to more general divide-and-choose games. This is the subject

of ongoing research and should allow more mechanisms to be studied in a

Bayesian setting.

7 Appendix

Proof of Proposition 1: Let β be a symmetric equilibrium in strictly in-

creasing and differentiable strategies when bidders are risk neutral. Suppose

that Player 2 follows β and Player 1 bids b. If x2 ≤ β−1(b), then Player 1 wins

the item, he pays b when the divider, and he pays β(x2) when the chooser.

If x2 > β−1(b), then receives b when the divider and β(x2) when the chooser.

Player 1 rejects Player 2’s offer, wins the item, and pays β(x2) to Player 2.
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The payoff of Player 1 with value x1 and bid b, denoted by π1(b;x1), is

1

2

[∫ β−1(b)

0

(x1 − b) f(x2)dx2 +

∫ x̄

β−1(b)

bf(x2)dx2

]
+

1

2

[∫ β−1(b)

0

(x1 − β(x2)) f(x2)dx2 +

∫ x̄

β−1(b)

β(x2)f(x2)dx2

]
.

The first order necessary condition for a maximum is

d

db
π1(b;x1) =

1

β′(β−1(b))
[x1 − 2b] f(β−1(b)) +

[
1

2
− F (β−1(b))

]
= 0.

In equilibrium b = β(x1), which yields the differential equation

β′(x1)

[
1

2
− F (x1)

]
− 2β(x1)f(x1) = −x1f(x1).

Since F (xM) = 1/2, then β(xM) = xM/2. Multiplying the differential equa-

tion on both sides by the integrating factor 1
2
− F (x1) yields

d

dx1

(
β(x1)

[
1

2
− F (x1)

]2
)

= −x1f(x1)

[
1

2
− F (x1)

]
.

From the Fundamental Theorem of Calculus we have

β(x1)

[
1

2
− F (x1)

]2

= −
∫ x1

0

mf(m)

[
1

2
− F (m)

]
dm+ C.

Since F (xM) = 1/2, at x1 = xM the left hand side of the above equation is

zero, and hence C =
∫ xM

0
mf(m)

[
1
2
− F (m)

]
dm. We have therefore that

β(x1) =

∫ xM
x1

mf(m)
[

1
2
− F (m)

]
dm[

1
2
− F (x1)

]2 =
1

2

∫ xM
x1

m2f(m)
[

1
2
− F (m)

]
dm[

1
2
− F (x1)

]2 .

Proposition 2 establishes this bid function is an equilibrium. �

Proof of Proposition 2: (i) Let β be a symmetric equilibrium in strictly

increasing and differentiable strategies when bidders have vNM utility func-

tion u. Suppose that player 2 follows β and player 1 bids b. The payoff of
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player 1 with value x1 and bid b, denoted by πu1(b;x1), is

1

2

[∫ β−1(b)

0

u (x1 − b) f(x2)dx2 +

∫ x̄

β−1(b)

u(b)f(x2)dx2

]
+

1

2

[∫ β−1(b)

0

u (x1 − β(x2)) f(x2)dx2 +

∫ x̄

β−1(b)

u(β(x2))f(x2)dx2

]
.

Differentiating πu1(b;x1) with respect to b and substituting b = β(x1) in

equilibrium yields the necessary condition

u (x1 − β(x1))−u(β(x1)) = β′(x1)

(
1

2
u′(x1 − β(x1))

F (x1)

f(x1)
− 1

2
u′(β(x1))

1− F (x1)

f(x1)

)
= 0.

This establishes part (i).

(ii) Let v(x1, y) denote the payoff to a bidder with value x1 who reports

value y, when his rival follows a solution β to the differential equation in part

(i) and β′ ≥ 0. Then v(x1, y) is

1

2

[∫ y

0

u (x1 − β(y)) f(x2)dx2 +

∫ x̄

y

u(β(y))f(x2)dx2

]
+
1

2

[∫ y

0

u (x1 − β(x2)) f(x2)dx2 +

∫ x̄

y

u(β(x2))f(x2)dx2

]
.

Part (i) established that

∂v(x1, y)

∂y

∣∣∣∣
y=x1

= 0.

Furthermore,

∂v(x1, y)

∂x1

=
1

2

[∫ y

0

u′ (x1 − β(y)) f(x2)dx2

]
+

1

2

[∫ y

0

u′ (x1 − β(x2)) f(x2)dx2

]
,

and

∂2v(x1, y)

∂x1∂y
=

1

2

[
2u′ (x1 − β(y)) f(y)−

∫ y

0

u′′(x1 − β(y))β′(y)f(x2)dx2

]
≥ 0,

where the inequality follows since β′ > 0. Suffi ciency of the first order con-

dition follows from McAfee (1994) Lemma 0. �
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Proof of Proposition 3: Without loss of generality, consider Player 1 when
her value is x1. We first show that Player 1 guarantees herself a payoff of

x1/2 choosing p1 = x1/2. Suppose p1 = x1/2. If Player 1 is the divider,

then she obtains a payoff of x1 − p1 = x1/2 if p1 ≥ p2 and she obtains p1

if p1 < p2.9 If Player 1 is the chooser, then she obtains x1 − p2 > x1/2 if

p1 > p2, and she obtains p2 if p1 ≤ p2.

Next we show that if p1 6= x1/2, then Player 1’s payoff is in some con-

tingencies less than x1/2. Suppose p1 > x1/2. If Player 1 is the divider and

p1 > p2, then player’s payoff is x1− p1 < x1/2. Suppose p1 < x1/2. If Player

1 is the divider and p2 ∈ (p1, x1/2), then Player 1’s payoff is p1. Hence the

strategy γ(x) = x/2 is the unique maxmin strategy. �
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